HEAT TRANSFER IN TURBULENT NON-NEWTONIAN
FLOW*

A. H. P. Skelland UDC 536.242:532.135

The effect of non-Newtonian Prandtl number on the distribution of resistance to heat transfer
is examined, Two new analogies between heat and momentum transfer are developed, one of
which is shown, by comparison with experiment, to be superior to another more complex and
recently published analogy-type expression. It is concluded that more accurate information
is needed on conditions near the wall before reliable characterization of heat transfer can be
made in such systems.

The complexities of rigorous analysis of this subject have so far proved prohibitive, but useful re-
sults have been obtained on the basis of analogies between the processes of heat and momentum transfer,
as first proposed by Osborne Reynolds in 1874. Many of the refinements in the theory of analogy for New-
tonian materials since that time are reviewed by Knudsen and Katz [1]. Attention will here be mainly con-
fined to two new analogies and one recent analogy between heat and momentum transfer for non-Newtonian
fluids in tubes.

Analyses by Metzner and Friend [2, 3, 4] refine and extend an earlier development by Reichardt which
defined the general form of a solution allowing for slight but unspecified turbulence close to the wall. The
purely viscous non-Newtonian expression [4] was restricted to conditions of effectively isothermal heat
transfer and, according to Petersen and Christiansen [5], yields predictions which deviate increasingly
from experimental values with increasingly non-Newtonian behavior. The precedure presented by Petersen
and Christiansen [5], however, is highly complex both in formulation and application.

The next section explains why assumptions regarding flow conditions in the vicinity of the wall are of
crucial importance to the success or otherwise of heat-transfer relationships based on analogies in the case
of most non-Newtonian materials, Emphasis will be on power-law non-Newtonian substances for which, in

tube flow
T ( _di)". 1)

The general rheology and characterization of these and other non-Newtonian fluids has been described
by Skelland [6].

The Distribution of Resistance to Heat Transfer in

Turbulent Flow

The heat-transfer coefficient for a power-law fluid in turbulent flow through a round tube will be a
function of the variables listed below (symbols are defined at the end of the article):

h = f(D, v, 0, Cp» k, K, fl). (2)
Dimensional analysis gives the following result for a given n:
hD Dy B/AGES
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or
Nu = f (Re*, Pr*). (4)

The radial heat flux at y may be written as
— — (o + ) "(”";T’

where gy is an eddy thermal diffusivity. For regions of small y near the wall q = qy, and

P (DN [k 2 (D" d(c,oT)
wie () (pc,, +S”)K(V) iy

. [ Lo, ] K /V)”‘l dr 3
bt K wor) s, \p) P ©

or

A dimensionless temperature is commonly defined as

T+ — (Tw '—T) pcpu* Do 4T = — qwdT+ (7)
. pepu*
and if the dimensionless distance from the wall is given by
u* 2—7n
g = ¥ Iz o R @8)

where u* is the friction velocity, vTyg./p, then
Kdy*
ny"H u*) e

Combination of Egs. (6), (7), and (9) yields the dimensionless expression

»_[1 &y ]n(_y—-_)—ldT+
] Pl_+ + (K/p) (V/D)n—]_ D u* dy+ . (10)

Consider now some particular point close enough to the wall for €y to be effectwely zero for the case
of two fluid systems with Prandtl numbers NPr and NPI.2 Suppose this difference in NPr is due solely to
differences in consistency index, K, the quantltles D, V,y, n, Cps k, and p/K having respectively the same
values in the two systems, so that NRe = NRe Equation (10) may be written for each system, and taking
ratios,

dy =

+ * \n—1 + -+
B Pr} (uz \) (dT™*/dy )1. (1)

TP\ @rdy,
An approximate relation between Fanning friction factor and Reynolds number in turbulent flow is
given by Dodge and Metzner [7]; it takes the following form for power-law fluids:

T o
= = i 5.103 < C, Re* < 105, 12
I= e = CreT h h 12
where o and § are functions of n only [6, 7]. The definitions of u* and f show that u* = VVi/2; butn, V, and
Nﬁe have respectively the same values in the two systems, so that uf = uf. Equation (11) accordingly be-
comes
dT* /dy* Pry
( 1dy®), _ ri ) (13)
(@T*idy"),  Pri

This shows that, for given values of Reynolds number and n, increasing the non-Newtonian Prandtl
number leads to an equivalent increase in the dimensionless temperature gradient in the wall region (where
eqg — 0, 4 — qy). This, of course, corresponds to locating more and more of the major resistance to heat
transfer within the sublayers near the wall with increasing NPr Non-Newtonian Prandtl numbers are in
fact high, so that assumptions concerning & near the wall, the nature and thickness of the laminar sub-
layer, and other quantities in the wall region become of critical importance in the analysis of turbulent
non-Newtonian heat transfer. Relationships based upon several different assumptions about conditions in
the vicinity of the wall will now be considered.
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Analogy Assuming a Laminar Sublayer and a Turbulent Core

A Tayloi*—Prandtl type of analysis will here be extended to non-Newtonian fluids for which the shear-
ing behavior is described by the power law. The laminar sublayer adjacent to the wall has thickness &y,
and the temperature and velocity in the x direction at y = &1, are T, and ur,.

Consider first the transfer of momentum and heat in the laminar sublayer, which is supposed to be
thin enough to assume linear distributions of velocity and temperature.

YT R
= — —-——_K —_— :K - ’ !/\q L? (14)
Tw K(dy \ y 8,
T, —T
qwz_kfl‘#ku w) y<8,. (15)
dy b,
from which
o RT=Tu) (16)
T Syt K-

w
Transfer in the turbulent core (y > 67) is described by Reynolds' analogy, in which aggregates of fluid
travel, on the average, back and forth between the edge of the laminar sublayer (u = uy, T = T1) and loca-
tions where velocity and temperature have bulk average values (u = V, T = Tp,). These fluid aggregates
carry the momentum and temperature corresponding to the location at which the aggregates first attain
identity. Thus for a constant-property fluid and an average aggregate mass m: momentum transfer to-

wards the sublayer = m(V —uy); heat transfer away from the sublayer = _mcp(Tm - Ty) or
g  —c (T, —T))
- —’V—._L (17)
Ty ‘*u[_

Equations (16) and (17) both apply at y = 01, Solving Eq. (16) for (Tyy — T1) and Eq. (17) for (T,
— Tyy) and adding the results,

51—:2 n K
¢y (Ty—Tp) = qi[_L_ukL_L 4 V“‘”L]
or
N - 9 _ f12
ST e, (T, —T) |, SWeK 18
V& v
Equation (18) is readily rearranged to
St = : [12 = (19)

u U D\
A e
vy s, !

Using Clapp's (8) assumption that at the edge of the laminar sublayer
ut =y fut = h" = 5

then since u* = VW2

u, = SV VIR (20)
and from Eq. (8) for y = 6y,
‘ K )‘/" (1)
8, =5 ————1 .
- ( WV i2p e
Combination of Egs. (19) to (21) gives
Nu fi2
St= Re'Prt -l ' (22)

145 l/%_ [(Re* «;—é—)TPr*——l]

where NNy, Nfto, Npyp, and f are defined by Eqs. (3), (4), and (12). The friction factor f is obtainable from
Eq. (12). (Other means for evaluating f when Canie > 10° are given by Skelland [6].)
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Alternative Analogy Assuming a Laminar Sublayer and

a Turbulent Core

The quantities uL/V and D/GL in Eq. (19) may be estimated in a different way which does not require
Clapp's assumption concerning the thickness of the laminar sublayer, namely y}: = 5%, This involves
derivation of an expression for turbulent velocity distribution in the tube as follows, Equation (12) may be
expanded to give

T, = ( ::+1 ) pV2~B(2—n) ( Y1 ) R—Bn = p(u*),
2 p
where

W= 8n—1K (__3-,2{;_1>n= K/Cn, (23)

Rearranging and eliminating the mean velocity V with the aid of the maximum velocity by putting V = 0.817
*Um (Bogue and Metzner [9]),
1
R 8
Uy 1 ( 2‘3'”") a-pa—n [ R (u*'™"p }2—&(2—n) (24)

o Y1

u* 0.817

Next, to quote Schlichting [10, line 20], "It is now natural to assume that this equation is valid for any wall
distance y, and not only for the pipe axis (wall distance y = R). Hence we obtain from Eq. (24)"

1 B
4 1 2Bn+1 2—f(2—n) yn(u*)zwnp 2—33.(2—'1) (25)
u_*_o.sw(a) [ T ]
and taking the ratio of Eqs, (25) to (24),
Bn
—BE—n)
LA (%) 7. (26)
um

This expression was first derived by Skelland [11] using a different method, and was shown to be in
good agreement with experiment, For Newtonian fluids n = 1.0, 5 = 0.25, and Eq. (26) reduces to the well
known Prandtl one-seventh power law,

Equation (26) is man'ipulated to give the following, after setting R = D/2, Uy = V/.817,u = ug,,y = oq,:
fe—n—2

Bn
=) T @)
5, 1%

Application of Eq. (12) to the laminar sublayer yields

u n
Ty = %sz(Cn Re'y P = K (G—L) ,

L
a ‘Vl 4+ l—'B " 28

n— Zgyr—JL__(C Re") oy, (28)
uL 2KP D"Vz_"p( ) L

1

o il
b (25) (%) 6, e
D oy, 12

Combining Eqs. (23), (27), and (28) and solving for up /V
1

2(1—B) _8 .
4 [2’“"4'”0\8175(2‘""2 (_C_n_)ﬂ] (C.Re?) (29)
a,
Equation (27) is inserted in Eq. (19) to obtain
fi2
St= 2(B—1) ' (30)

B(2—n)—2 Br -1
1+%{[2(0.817) Br (i“,ﬁ) ] Pr*—l}

where uy,/ V is given by Eq. (29).
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TABLE 1. Comparison between Experimental Ny, and Values Cal-
culated from Equations 22, 30, and 40 for Tubes

Nusselt Number

+ Cla
€,Ret _Ect_ n Exper- equation —-Mgftinelli, equation

n imental 29 Eq. 40. 30

(Clapp, [8] Q' =1,0

5,145 98,3 0,733 119,4 93,3 86,8 34,1
9,340 101,6 0,698 213,5 203,0 172,5 76,7
12,070 95,0 0,719 272,0 249,0 218,0 91,7
14,770 69,6 0,744 286,8 286,0 236,2 107,0
23,000 61,3 0,786 431,5 407,0 345,8 158,4

Analogy Assuming a Laminar Sublayer, a Buffer Layer,

and a2 Turbulent Core

An extension of Martinelli's analogy was performed by Clapp [8] for power-law non-Newtonian fluids
using the following Martinelli assumptions:

T T Yy K ’du>n du 31
—_— e (L = = ey, (31)
b P ( R) P (dy " dy
9 _ G (l_ﬂ_):_( k +8H‘)ET_, (32)
pCp 0C, R pcp dy

where the eddy diffusivities of heat and momentum are related by
&, = Q'BM . (33)
Clapp (8] developed the following expressions for velocity distribution in the tube.

Laminar sublayer:

ut=H'", 0yt < Bn. (34)
Buffer layer:
ut =20 1y 305, <yt <y (35)
n
Turbulent core:
u+:2.n78 lny++%§, vy (36)

The laminar sublayer was assumed to extend to y* = 51; y2+ is located at the intersection of Egs,
(35) and (36). These relationships were used to obtain the temperature profile in the tube, as shown be-
low.

Laminar sublayer:

’ —1/n
T, —T = Q. (——1;; ) . 0>y 37)
Buffer layer:
+ n—1
b Yn 5 nyt | .
ro-T=0 [ [ Z (B e T+ e s<v <o o
b
Turbulent core:
G + F9\2—n ’ n
TZﬁT:Qsz_ln[Ci_Re_églgﬁz_)__[l_n(_z_\)]’ v g (39)
- 2 /
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Fig. 1. Comparison between experimental Nusselt numbers and
values calculated from Eqgs. (22), (30), and (40) for tubes. (0.69
<n <0.79; 61 < ]?r‘k/Cn < 104): 1) experimental; 2) Eq. (22); 3)
Eq. (40); 4) Eq. (30).

Fig. 2. Radial temperature distribution in a tube for turbulent
flow of power-~lawnon-Newtonian fluids (Eqs. (37), (38), and (39)).
NRe+ = 10% 0= 0.5; Q' = 1.0: 1) Npp+ = 1; 2) Nppt = 10;  3)
Npp+ = 100.

where Qy = quAl'c pu*; G = 2.78. These equations reduce to those derived by Martinelli for high~Prandti-
number Newtonian fluids when n = 1.0,

The corresponding Stanton number is

VB {To—T
st— 2 VIR @ ) (40)
F.¥FFF \T.—T.

where

F :_@C_&( Ty )”””;

°‘ k Kyt
y;' n—1 4 —
» nk T 1/n “n ﬂy _}
Fy = CE * —n(B | dy*;
s
of
G o 4n
F,= — InC,_Re* )" .
= —InC,Re V2 aF

Comparisons between Nusselt numbers calculated from Egs. (22), (30), and (40) and experimental
values appear in Table 1. (Calculations are by slide rule and therefore approximate.) Results are also
plotted in Fig. 1, which contains six additional experimental points from Clapp [8].

It is interesting to note that the least sophisticated analysis culminating in Eq. (22) gives resulis
which, although low, are substantially closer to the experimental measurements than those obtained either
by the more complicated Eq. (30) or by the still more complex Martinelli-type treatment leading to Eq. (40).

This is consistent with current postulates which replace the hypothetical laminar sublayer with some
degree of eddying motion which does not decay to zero until the solid surface is reached. Thus Eq. (22) al-
lows full turbulence beyond the laminar sublayer [y* > (yi = 51)], whereas Eq. (40) allows ouly reduced
turbulence in the buffer layer (5% <y* <y;). Equation (30), although allowing full turbulence beyond the
laminar sublayer, nevertheless requires a laminar sublayer more than twice as thick as either of the other
two models. This may be seen from consideration of the definitions of y+. Nﬁe, and u*, which shows that

2--n

o = (~f~ )“" (% )TRe“- (41)
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TABLE 2, Comparison between Laminar Sublayer Thicknesses (yi)
Corresponding to Equations (22), (30), and (40)

CqRet 5,145 9,340 12,070 14,770 23,000
yi~ comesponding to |

Eqs. (22) and (40) 3,25 3,07 3,17 3,31 3,585
y}f: comesponding to 7,1 ’ 6,37 6,7 7,34 8,0

Eq, (30)

In the case of the alternative analogy leading to Eq. (30), D/61, is obtained from Eqs. (27) and (29).
Dimensionless thicknesses of the laminar sublayer yi, calculated from Eq. (41) and corresponding to Eq.
(30), and from yf: = 51 corresponding to Egs. (22) and (40), are compared in Table 2.

Table 1, then, shows improvement in prediction with increasing allowance for turbulence near the
wall. If, however, we assume full turbulence right up to the solid surface, Eq, (17) is written with (Ty,
0} in place of (Ty, ug) to give Ng = f/2. This, unfortunately, yields Nyy values between 8 and 16 times
higher than the experimental results in Table 1.

Further information on this problem is provided by Fig. 2, where Eqs. (37), (38), and (39) have been
used to plot the radial temperature distribution in dimensionless form as (Ty, — T)/(Ty — T;) versus yv/R
with NIJSI. as parameter. The plots are for Nﬁe = 10,000, €' = 1.0, and n = 1/2 and were obtained after
utilizing the following relationships

Tylp [ Ty Y2 6n 42 \"1 | 42
v (T) B <_ n ) e )
s Re" s Y\ (43

y = Vi (R)- )

Figure 2 shows that, as the non-Newtonian Prandtl number increases, the temperature profile be-
comes [latter in the turbulent core and steeper near the wall, until the latter region exerts the dominant
influence on heat transfer, in accordance with the conclusions reached earlier, below Eq. (13).

All of these considerations underline the importance of assumptions about the wall region when Ni;r
is high. It seems likely that the level of agreement obtained with the simplest relationship (Eq. 22) is
merely fortuitous, so that adjustment of yi from 50 to a somewhat lower value, in order to obtain a closer
fit to the data, would be illusory. Genuine improvement must await clarification of flow in the wall region,
perhaps using laser techniques.

NOTATION
Cp is defined by Eq. 23, dimensionless;
cp is the specific heat, BTU/Ib - °R;
D is the tube diameter, ft;
f is the friction factor (Eq. 12), dimensionless;
ge is the conversion factor, 32.174 Ib mass - ft/1b force * sec?;

h is the coefficient of heat transfer, BT U/h - ft?- °R;

K is the fluid consistency index, lb mass - sec?~2.ft-1,

k is the thermal conductivity, BTU/sec - ft2- °R/ft, or BTU/h - ft? - °R/ft;
m is the mass, lb mass;

n is the flow behavior index, dimensionless:

NNy is the Nusselt number, h D/k, dimensionless;

N+r is a Prandtl number defined by Eqgs. (3-4), dimensionless;
NRe is a Reynolds number defined by Egs, (3-4), dimensionless;
Nst is the Stanton number = Ny,/N{ N, dimensionless;

Qu is defined below Eq. 39;

a6 Gy are heat flux and heat flux at the wall respectively, BTU/h - ft%
R is the tube radius, ft;

r is the radial distance, ft;

T is the temperature, °R;
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T, Ta, T1y Tm, Ty Ty are dimensionless temperature (Eq. (7)), centerline temperature, tem-
perature at y = 01,, bulk average temperature, wall temperature, and
T at y, respectively, °R;

u, ut, ur, Um are local velocity, u/u*, velocity aty = 61, maximum or centerline vel-
ocity, all in the x direction, ft/sec;

u* is the friction velocity, VT g./p, ft/sec or ft/h;

v is the mean velocity in the x direction, ft/sec;

X is the distance in the direction of flow, ft;

v, v°, yf:, y; are distance normal to surface, alsoy = R — r, ft, defined by Eq. (8),
ytaty= 6y, y* at intersection of Egs. (35) and (36), (y* = dimen-
sionless);

o is the constant in Eq. (12), dimensionless;

at is the thermal diffusivity, k/pcp, £t2/h;

B is the constant in Eq. (12), dimensionless;

Y is K/Cp;

61, is the thickness of laminar sublayer, ft;

&1, EM are eddy thermal and momentum diffusivities, ft2/hr;

o is the density, lb mass/ft3;

Tw is the shear stress at a conduit wall, Ib force/ft%

Trx is the shear stress in x direction on surface normal to r, b force/ft?

Qr is EH/EM.
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